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Why simulate?

The PRAM is an excellent framework 
for studying parallelism.
However, a global shared memory is 
not easily implementable on a large 
scale.
Practical approach: construct a fixed-
connection network and simulate the 
PRAM on it.
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Simulation on a butterfly

Each PRAM processor is simulated by 
a node of the butterfly.
The global memory is distributed 
among the nodes of the butterfly.
Memory access: send a packet to the 
appropriate node.
Memory read: said node returns the 
desired data.
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A worst-case scenario

If #memory cells >> #processors, 
memory contention may be an issue 
(even with EREW).
M ≥ N2: all N processors may wish to 
access memory locations that reside 
on the same node.
Combining will not help in practice.
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A randomized simulation based on 
hashing

To simulate an N-processor PRAM with M 
memory cells on an N-node butterfly:

We randomly distribute the M memory cells 
among the butterfly’s N local memories using a 
O(logN)-wise independent random hash function 
h:[1,M]→[1,N].
The packet routing problem that emerges for a 
single step of the PRAM computation is an 
average-case routing problem, solvable in 
O(logN) steps with high probability.
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A closer look at the simulation

Route each packet within its row to level 0. 
(each row ends up with O(logN) packets)
Then, route each packet to its correct row. 
(in O(logN) steps with O(1)-size queues)
Finally, route each packet to the correct 
level within its destination row. (with high 
probability there are O(logN) packets destined for 
each row, so this takes O(logN) steps)
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Methods for improving efficiency

The simulation we described is 
optimal, since each processor may 
wish to access data that is Ω(logN) 
away in the network.
However, using a logN-dimensional 
butterfly yields a Θ(logN)-factor 
improvement in the efficiency of the 
simulation.
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Simulation using a logN-
dimensional butterfly

Can be used to simulate a 
NlogN-processor PRAM.
Each input node simulates 
logN processors.
Routing can still be done 
in O(logN) steps with high 
probability.
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Simulating with data replication

Data replication: make multiple 
copies of the data stored in the global 
memory.
Idea: if there is contention for one 
memory block, we might still gain 
quick access to another memory 
block that replicates the data we 
need.
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Data replication overhead

Storing k copies of each data item 
takes k times as much total space.

Keeping track of old copies.

We need to ensure that any set of N 
memory locations can be accessed 
quickly.
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A deterministic simulation using 
replicated data

Each item is replicated k=logM times.
Any set of N items can be accessed in 
O(logM logN loglogN) steps on an N-node 
butterfly.
Each copy of an item includes a timestamp
(PRAM step during which the copy was last 
updated).

To complete a memory access, we have to 

successfully access at least           copies.⎥⎥
⎤

⎢⎢
⎡ +

2
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A special hash function for data 
replication

The j-th copy of the i-th item will be 
stored in memory location h(i,j) 
where h:[1,M]×[1,k]→[1,N] is a 
special hash function satisfying:

any block of memory stores O(Mk/n) 
copies of items.
the copies of any set of s items are 
spread across at least 3ks/4 blocks of 
memory, for s≤ε0N/k.
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A phase of the simulation (1)

1. Compute the number of unsatisfied 
requests, It.

2. Identify a set of s=min{It, ε0N/k} 
active unsatisfied requests.

3. Relocate the i-th active request to 
node (i-1)k+1.

4. Make k copies of each request, and 
store the j-th copy of the i-th request 
in node (i-1)k+j.
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A phase of the simulation (2)
5. Sort the sk resulting requests by 

destination block, and eliminate all but one 
for each block. At least 3sk/4 requests 
survive.

6. Route surviving requests to their 
destinations, and return successful packets 
to the node where they originated.

7. Check whether or not (k+1)/2 or more 
copies of each active request were 
satisfied.

8. Identify a current copy for each satisfied 
request.
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An upper bound on the number of 
phases

An active request is not satisfied ⇔ at 
least k/2 of its copies are not 
satisfied.
But the number of copies of active 
requests that are not satisfied is at 
most ks/4.
Therefore, at least s/2 active requests 
are satisfied in each phase.
It turns out that O(logM) phases 
suffice.
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Running time of the simulation

Each phase of the simulation can be 
completed in O(logN loglogN) steps.
The loglogN-factor is due to sorting.
The running time can be improved by 
a logloglogN-factor with a better 
analysis.
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Information dispersal

Encode each item z into k pieces z1, 
z2, …, zk such that:

|zi|≈3|z|/k, for each i.
z can be reconstructed from any k/3 
pieces.

Each time we need to access z, we 
are content with accessing 2k/3 
pieces of z.
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Using information dispersal to 
improve performance

O(logM) phases of the previous 
algorithm still suffice.
However, the operations involve 
much shorter items and we can 
expect things to run k/3=Θ(logM) 
times faster.
Therefore, the running time now 
becomes O(logN loglogN) steps.
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