
Simulating a Parallel Random
Access Machine

Introduction to Parallel Algorithms
and Architectures,
§3.6

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

2/18

Why simulate?

The PRAM is an excellent framework
for studying parallelism.
However, a global shared memory is
not easily implementable on a large
scale.
Practical approach: construct a fixed-
connection network and simulate the
PRAM on it.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

3/18

Simulation on a butterfly

Each PRAM processor is simulated by
a node of the butterfly.
The global memory is distributed
among the nodes of the butterfly.
Memory access: send a packet to the
appropriate node.
Memory read: said node returns the
desired data.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

4/18

A worst-case scenario

If #memory cells >> #processors,
memory contention may be an issue
(even with EREW).
M ≥ N2: all N processors may wish to
access memory locations that reside
on the same node.
Combining will not help in practice.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

5/18

A randomized simulation based on
hashing

To simulate an N-processor PRAM with M
memory cells on an N-node butterfly:

We randomly distribute the M memory cells
among the butterfly’s N local memories using a
O(logN)-wise independent random hash function
h:[1,M]→[1,N].
The packet routing problem that emerges for a
single step of the PRAM computation is an
average-case routing problem, solvable in
O(logN) steps with high probability.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

6/18

A closer look at the simulation

Route each packet within its row to level 0.
(each row ends up with O(logN) packets)
Then, route each packet to its correct row.
(in O(logN) steps with O(1)-size queues)
Finally, route each packet to the correct
level within its destination row. (with high
probability there are O(logN) packets destined for
each row, so this takes O(logN) steps)

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

7/18

Methods for improving efficiency

The simulation we described is
optimal, since each processor may
wish to access data that is Ω(logN)
away in the network.
However, using a logN-dimensional
butterfly yields a Θ(logN)-factor
improvement in the efficiency of the
simulation.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

8/18

Simulation using a logN-
dimensional butterfly

Can be used to simulate a
NlogN-processor PRAM.
Each input node simulates
logN processors.
Routing can still be done
in O(logN) steps with high
probability.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

9/18

Simulating with data replication

Data replication: make multiple
copies of the data stored in the global
memory.
Idea: if there is contention for one
memory block, we might still gain
quick access to another memory
block that replicates the data we
need.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

10/18

Data replication overhead

Storing k copies of each data item
takes k times as much total space.

Keeping track of old copies.

We need to ensure that any set of N
memory locations can be accessed
quickly.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

11/18

A deterministic simulation using
replicated data

Each item is replicated k=logM times.
Any set of N items can be accessed in
O(logM logN loglogN) steps on an N-node
butterfly.
Each copy of an item includes a timestamp
(PRAM step during which the copy was last
updated).

To complete a memory access, we have to

successfully access at least copies.⎥⎥
⎤

⎢⎢
⎡ +

2
1k

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

12/18

A special hash function for data
replication

The j-th copy of the i-th item will be
stored in memory location h(i,j)
where h:[1,M]×[1,k]→[1,N] is a
special hash function satisfying:

any block of memory stores O(Mk/n)
copies of items.
the copies of any set of s items are
spread across at least 3ks/4 blocks of
memory, for s≤ε0N/k.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

13/18

A phase of the simulation (1)

1. Compute the number of unsatisfied
requests, It.

2. Identify a set of s=min{It, ε0N/k}
active unsatisfied requests.

3. Relocate the i-th active request to
node (i-1)k+1.

4. Make k copies of each request, and
store the j-th copy of the i-th request
in node (i-1)k+j.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

14/18

A phase of the simulation (2)
5. Sort the sk resulting requests by

destination block, and eliminate all but one
for each block. At least 3sk/4 requests
survive.

6. Route surviving requests to their
destinations, and return successful packets
to the node where they originated.

7. Check whether or not (k+1)/2 or more
copies of each active request were
satisfied.

8. Identify a current copy for each satisfied
request.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

15/18

An upper bound on the number of
phases

An active request is not satisfied ⇔ at
least k/2 of its copies are not
satisfied.
But the number of copies of active
requests that are not satisfied is at
most ks/4.
Therefore, at least s/2 active requests
are satisfied in each phase.
It turns out that O(logM) phases
suffice.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

16/18

Running time of the simulation

Each phase of the simulation can be
completed in O(logN loglogN) steps.
The loglogN-factor is due to sorting.
The running time can be improved by
a logloglogN-factor with a better
analysis.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

17/18

Information dispersal

Encode each item z into k pieces z1,
z2, …, zk such that:

|zi|≈3|z|/k, for each i.
z can be reconstructed from any k/3
pieces.

Each time we need to access z, we
are content with accessing 2k/3
pieces of z.

July 10th, 2006 Parallel Algorithms (NTUA) -
presentation by Evangelos Bampas

18/18

Using information dispersal to
improve performance

O(logM) phases of the previous
algorithm still suffice.
However, the operations involve
much shorter items and we can
expect things to run k/3=Θ(logM)
times faster.
Therefore, the running time now
becomes O(logN loglogN) steps.

	Simulating a Parallel Random Access Machine
	Why simulate?
	Simulation on a butterfly
	A worst-case scenario
	A randomized simulation based on hashing
	A closer look at the simulation
	Methods for improving efficiency
	Simulation using a logN-dimensional butterfly
	Simulating with data replication
	Data replication overhead
	A deterministic simulation using replicated data
	A special hash function for data replication
	A phase of the simulation (1)
	A phase of the simulation (2)
	An upper bound on the number of phases
	Running time of the simulation
	Information dispersal
	Using information dispersal to improve performance

